

PRINTED CIRCUIT BOARD (PCB) DESIGN AND LAYOUT

Today:

- •Turn a circuit schematic(s) into PCB design(s).
- •Turn-key-manufacturing to get your designs ma
- •Exercise our knowledge of PCB design by creating a design;
 - And another design
 - And another
 - And another.

•If you can read a schematic= yay!

HI!

Your Instructor: Ryan Bates

Edu: BSEE

Exp: 10yr + Electrical and

Hardware Engineering

(is not an expert)

Ask questions any time!

EDUCATION VS EXPERIENCE

Skills take time to learn.

Invest in skills that are difficult to master.

YOU MUST DESIGN & ASSEMBLE to gain experience (skill).

(ryan tells story about his first engineering job?)

SURFACE MOUNT TECHNOLOGY (SMT)

Design

PCB Fabrication

Automated Manufacturing

SURFACE MOUNT TECHNOLOGY

SURFACE MOUNT TECHNOLOGY (SMT)

Electronics Manufacturing.

INTRODUCTION TO SMT

SMT = Surface Mount Technology.

Printed Circuit Board (PCB) assembly by mounting components (Surface Mount Devices) directly onto the surface.

SMD ASSEMBLY STEPS (BY HAND) Inspect/

Setup

Paste

SMD place

Reflow

Rework

BENEFITS OF SMT

- Smaller component size +
- Predictable shape/ footprint
- Higher component density
- Automated assembly
- Low Cost & High Output

APPLICATIONS OF SMT

- Consumer Electronics: Smartphones, tablets, laptops,
- Automotive Industry: ECU, battery management
- Industrial Electronics: automation systems, robotics, plant monitoring
- Medical Devices: production, diagnose, monitoring equipment.
- Economies of Scale: SMT allows for high volume production at lower costs.

(Basically EVERYTHING)

PCB LAYERS VOCAB

PCB BASIC VOCABULARY

Copper Layer

Substrate

SMD

Solder Mask

Silkscreen
Surface Finish
Through-Hole
Via

PCB BASIC VOCABULARY

(SURFACE FINISH)

Two common examples:

- -HASL (Hot Air Surface Level)
- -ENIG (Electroless Nickel Immersion Gold)

Conformal Coating ...a dozen more

ELECTRONIC DESIGN AUTOMATION (EDA TOOLS)

Totally Free. Open Source (is pretty good)

\$100/ year

\$4,200/ year (is very complex, can do fancy stuff. Professional tool)

OrCAD

\$1,280/year

Don't be concerned about which software tool. Just start learning the skill of design/layout.

PCB MANUFACTURING SERVICES

Online, turn-key manufacturing.

SMD PACKAGE SIZES (BASIC)

Flat chip nomenclature.

Size range: spec of sand to grain of rice

Size Code		Approximate Size (LxW)		
<u>Inch</u>	<u>Metric</u>	<u>Inch</u>	<u>Metric</u>	
0402	1005*	.04" x .02"	$1.0 \times 0.5 \text{mm}$	
0504	1210*	.05" x .04"	1.2 x 1.0mm	
0603	1508	.06" x .03"	1.5 x 0.8mm	
0805	2012	.08" x .05"	2.0 x 1.2mm	
1005*	2512	.10" x .05"	2.5 x 1.2mm	
1206	3216	.12" x .06"	3.2 x 1.6mm	
1210*	3225	.12" x .10"	3.2 x 2.5mm	
1812	4532	.18" x .12"	4.5 x 3.2mm	
2225	5664	.22" x .25"	5.6 x 6.4mm	

SMD (COMMON PARTS)

INNE

Small **Dual Flat No Lead** Outline DFN 2 Bumped Die 8-lead DFN (MC) (WLCSP) 2 x 3 x 0.9 mm 3-lead DDPAK (EB) **₽** Die/Wafer 8-lead TDFN (MN) (WLCSP) 2 $2 \times 3 \times 0.75 \,\mathrm{mm}$ 5-ead DDPAK (ET) 0 3-lead SC70 (LB) 8-lead UDFN (MU) $2 \times 3 \times 0.5 \text{ mm}$ 3-lead SOT-89 5-lead SC70 (LT) ₩ 8-lead DFN (MF) 1 $3 \times 3 \times 0.9 \text{ mm}$ 3-lead SOT-23 ₩ III (TT/CB) 3-lead T0-92 (TO/ZB) 8-lead DFN (MD) 4 × 4 × 0.9 mm 5-lead SOT-23 (OT) 8-lead DFN (MF) 2 6 x 5 x 0.9 mm 6-lead SOT-23 (OT/CH) **Very Thin Thermal Leadless Array** VTLA 5-lead TO-220 (AT) 4 3-S0T-223 (DB) 36-lead VTLA (TL) $5 \times 5 \times 0.9 \text{ mm}$ 4-lead SOT-143 (RC) 44-lead VTLA (TL) 6 × 6 × 0.9 mm

124-lead VTLA (TL)

9 x 9 x 0.9 mm

QFN

₹

₹

☎

₽

64-lead QFN (MR) 9 x 9 x 0.9 mm

Plastic Shrink Small Outline SSOP

8-lead MSOP (MS)

10-lead MSOP (UN)

16-lead QSOP (QR)

20-lead SSOP (SS)

28-lead SSOP (SS)

0 8-lead TSSOP (ST)

TSSOP

14-lead TSSOP (ST)

20-lead TSSOP (ST)

Plastic Small Outline SOIC

8-lead SOIC (SN)

8-lead SOIC (SM)

14-lead SOIC (SL)

16-lead SOIC (SL)

18-lead SOIC (SO)

20-lead SOIC (SO)

28-lead SOIC (SO)

PIN INDICATION, POLARITY, STANDARDS

Fiducial mark

https://www.digikey.com/en/products/detail/infineon-technologies/BTN70301EPAXUMA1/13898609

PIN INDICATION, POLARITY, Marking

Polarity marking

Example : 6.3 V 22 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification Mark for Lead-Free products (Black dot) Rated voltage code Lot number R.voltage code Unit: V 6.3 25 10 35 A 16 50

PININDICATION, POLARITY,

REFERENCE Markers

(Polarity markings)

Bill of Materials (BoM)

Reference	Value	DigiKey P/N	Unit Cost
BT1	Battery	BU2032SM-GCT-ND	\$1.25
C1,C2,C3	0.1uF	1292-1605-1-ND	\$0.10
C4	1uF	1276-1068-1-ND	\$0.14
D1,D2,D3,D4,D5,D6,D7,D8	LED, Red	67-1359-1-ND	\$0.17
R1	37.4k	311-37.4KFRCT-ND	\$0.10
R2	20k	311-20.0KFRCT-ND	\$0.10
R3	6.2k	311-6.2KERCT-ND	\$0.10
SW1	SW_Push	CKN12221-1-ND	\$0.17
U1	ICM7555xB	296-1336-1-ND	\$0.55
U2	TLC5916	296-22710-1-ND	\$1.29

Picked?

AUTOMATED ASSEMBLY: PICK AND PLACE

PICK AND PLACE: POSITION DATA

PIN INDICATION, POLARITY, Picking complexities DARDS

WHERE TO BUY PARTS

Pick reputable vendors. There are 100k's + of SMD parts. You must trust the source to trust what you produce.

DATASHEETS!

Dimensions: [mm]

Scale - 3:1

Recommended Land Pattern: [mm]

Scale - 3:1

Schematic:

Electrical Properties:

Properties		Test conditions	Value	Unit	Tol.
Capacitance	С	0.25 V/ 120 Hz/ +20 °C	220	μF	±20%
Rated Voltage	V _R		10	V (DC)	max.
Surge Voltage	V _S	1000 cycles @ 20 °C	11.5	V (DC)	max.
Leakage Current	Leak	2 min./ +20 °C	300	μА	max.
Dissipation Factor	DF	0.25 V/ 120 Hz/ +20 °C	8	%	max.
Ripple Current	IRIPPLE	100 kHz @ 105 °C	1970	mA	max.
ESR	R _{ESR}	0.25 V/ 100 kHz/ +20 °C	30	mΩ	max.

General Information:

Alumini	um Polymer Capacitors	
Operating Temperature	-55 up to +105 °C	
Storage Conditions (in original packaging)	5 °C up to + 35 °C; 10 % up to 75 % RH	
Endurance	2000 h	
Moisture Sensitivity Level (MSL)	1	
Test conditions of electrical proper	rties: +20 °C, 35 % RH if not specified differently	
FIT according	to separate documentation	
Surge Voltage: charging tim	ne 30 s, discharging time 330 s for a cycle	

DATASHEETS!!

Classification Reflow Profile for SMT components:

Classification Reflow Soldering Profile:

Profile Feature		Value
Preheat Temperature Min	T _{s min}	150 °C
Preheat Temperature Max	T _{s max}	200 °C
Preheat Time t _s from T _{s min} to T _{s max}	ts	60 - 120 seconds
Ramp-up Rate (T _L to T _P)		3 °C/ second max.
Liquidous Temperature	TL	217 °C
Time t _L maintained above T _L	tL	60 - 150 seconds
Peak package body temperature	Tp	$T_p \le T_c$, see Table below
Time within 5°C of actual peak temperature	t _p	20 - 30 seconds
Ramp-down Rate (T _P to T _L)		6 °C/ second max.
Time 25°C to peak temperature		8 minutes max.

refer to IPC/ JEDEC J-STD-020E

Package Classification Reflow Temperature (T_c):

Properties	Volume mm³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
PB-Free Assembly Package Thickness < 1.6 mm	260 °C	260 °C	260 °C
PB-Free Assembly I Package Thickness 1.6 mm - 2.5 mm	260 °C	250 °C	245 °C
PB-Free Assembly Package Thickness > 2.5 mm	250 °C	245 °C	245 °C

refer to IPC/ JEDEC J-STD-020E

YOU can assemble these designs!

SMD PART <u>NUMBERS</u>, <u>REFERENCE</u>

DESIGNATO

YOU can assemble these designs!

(SMD Reflow overview)

Now you know the lingo and the technology. Let's talk about the software design toolset EDA (Electronic Design Automation)

SURFACE MOUNT TECHNOLOGY (SMT)

Automated Manufacturing

PCB Fabrication

PCB Assembly

Kinda like plumbing but the pipes < 1mm.

WORKFLOW (HEADSPACE TALK FROM COACH)

Schematic

Layout

Routing is a puzzle.

It will develop into a skill only with practice.

WORKFLOW (Don't break parity)

Schematic

Layout

WORKFLOW (THERE ARE RULES/ BEST PRACTICES/ ATTENTION TO DETAILS)

Schematic

Electrical Rules

Layout

WORKFLOW (IF YOU BREAK RULES/ UNAWARE OF THEM)

You will make mistakes. Embrace them.

Schematic

Layout

PROJECT #1!

- •RJ-45 (ethernet) breakout PCB
- •Use network cables as whatever you want 8-conductor power, data, signal cables

...Example #2 and #3

Open KiCAD.

Layout time!

EXERCISE 3: WHAT IS IT?

Turn on lights (LEDs) without a microcontroller.

